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Numerical evidence for non-Abelian quantum liquids in the lowest Landau level
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Signatures of non-Abelian statistics are sought in correlated liquids of composite fermions (CFs) responsible
for a “second generation” of fractional quantum Hall effect. The hierarchy stems from the zero-energy state of
a model CF interaction by means of a flux attachment procedure converting this uniquely correlated state of
“first-generation” CFs to a filled shell of second-generation CF*’s. Quasiholes of this state do not obey Abelian
statistics. The hierarchy is confirmed numerically, including known states at filling factors v,=4/11 and 3/8

and a hypothetical state at v,=9/25.
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The theory of Laughlin! for fractional quantum Hall
(FQH) effect” invokes the concept of incompressible quan-
tum liquids (IQLs) formed by two-dimensional (2D) elec-
trons in the lowest Landau level (LL). The quasiparticle (QP)
excitations of the IQL carry fractional electric charge (e.g.,
q== %e at LL filling factor vezé). It was further realized?
that Laughlin QPs are neither fermions nor bosons but
“anyons” characterized by complex exchange phase ¢'? and
allowed exclusively in two dimensions.* However, Chern-
Simons transformation (attachment of magnetic flux) enables
transmutation of statistics in two dimensions.’ This justifies
fermionic description of Laughlin QPs in the “composite fer-
mion” (CF) theory of Jain® for the FQH effect.

Even more unusual statistics was later identified for quasi-
hole (QH) excitations of the Moore-Read state,” arguably
responsible for FQH effect in a half-filled second LL.}® Since
the Hilbert space of Moore-Read QHs located at fixed posi-
tions is degenerate, their adiabatic exchange is represented
by a matrix (instead of merely a phase factor). Since matrix
exchange operations do not generally commute, such statis-
tics is called “non-Abelian.”

Interest in non-Abelian states was revived by the idea of
fault-tolerant “topological quantum computation.”® However,
the focus has been almost exclusively on the Moore-Read
model state,'” whose relevance for experimental FQH sys-
tems at v,=3 is still debated.'"2

In this Rapid Communication we postulate a non-Abelian
electron liquid in the lowest LL. The hierarchy it generates
through a flux attachment transformation includes
confirmed'® FQH states at Ve=l4—l and 2, which in the model
of Jain® correspond to a partially filled second LL of CFs.

We consider N fermions of charge ¢ confined to a
Haldane sphere of unit radius.'* The magnetic monopole of
strength 20 (i.e., flux 4mB=20¢,, where ¢,=hc/q is the
flux quantum) produces isotropic radial field B yielding mag-
netic length scale A=\%c/gB=Q""? at the surface. The sth
LL (called LL,) is a multiplet of single-particle angular mo-
mentum € =Q+s. Interaction Hamiltonian in an isolated LL
is determined by Haldane pseudopotential V(R), defined" as
dependence of pair interaction energy on relative pair angu-
lar momentum (for K particles: R =K{—L, where L is total
angular momentum; for two identical fermions: R=1,3,...).

The Haldane sphere is a useful model for extended many-
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body problems in a partially filled LL, assuming that corre-
lations are isotropic and have relatively short length. This is
usually true of FQH liquids. For example, correlations of the
Laughlin ve=% state are induced by the first coefficient of the
Coulomb pseudopotential in LL,. They mean avoidance of
the pair state at the minimum R =1 or, more formally, van-
ishing of Haldane pair amplitude G (Ref. 15) at R=1. In
terms of wave functions, each electron binds two additional
vortices, as described by the Laughlin-Jastrow prefactor
e j(zi—2 j)z (where z’s are complex coordinates). This is el-
egantly captured by the theory of Jain® in which correlated
electrons convert into nearly free CFs by binding some of the
external magnetic field B in the form of flux tubes. Flux 2¢,
pointing opposite to B is attached to each electron, leaving a
reduced effective field Bcp=B-20¢, (0 being 2D concen-
tration) seen by the CFs and corresponding to an increased
effective filling factor vep=(v,'=2)7".

The “second generation” of FQH states'3 corresponds to a
partially filled CF-LL; (second LL of CFs). The strongest
states 1/6:14—1 and % have vcng-1 and %, ie., VZ% and % partial
fillings of CF-LL,. In contrast to “first-generation” Laughlin/
Jain states, their incompressibility depends on “residual” CF
interaction. Effective pseudopotential in CF-LL; is domi-

nated by repulsion at R=3,'%17 making CF correlations at
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FIG. 1. (Color online) (a) Discrete correlation functions

(Haldane amplitude G versus relative pair angular momentum R)
for v:% nondegenerate zero-energy ground states of model interac-
tion V=35 for N=9 and 10 particles on a Haldane sphere (2¢=5N
—9) compared to Laughlin state (V=26;+ &, 2€=5N-5). (b) and (c)
Analogous plots for v=% and %: nondegenerate ground states of V
=8y at 2€=3N-7 and 2N-3 compared to Laughlin state (V= 4, and
2¢=3N-3) and nondegenerate Coulomb ground state in LLj,
respectively.
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TABLE 1. Total angular momentum (L) multiplets with zero
amplitude G(3) at the relative pair state R=3 [i.e., the exact zero-
energy states of the model pseudopotential V=58;(R)] for N=8 par-
ticles with different shell angular momenta €.

20 L
32
33 0222468
34 031243345526%7282910 12
08 12 213 38 418 510 617 79 813 96 108 11'5 124 13
35 14% 16

V=% or % distinct from electron correlations at the same fill-
ing v, of LL, or LL;. The tendency of CFs to minimize the
pair amplitude G(3) instead of G(1) was demonstrated (by
direct calculation of pair and triplet amplitudes)'® to be
equivalent to a form of CF pairing.

For description of correlated CFs, an intuitive model
analogous to the CF description by Jain® of Laughlin-
correlated electrons would be useful. Hence, we seek conver-
sion of an incompressible many-CF state at V=% or % to a
filled shell of (essentially) noninteracting hypothetical fermi-
ons to be called “second-generation CFs” or, shortly, CF*’s.

First, we will identify the maximum-density state with
G(3)=0, i.e., nondegenerate zero-energy (E=0) ground state
of a model pseudopotential V(R)=8;(R) = r 3. From exact
diagonalization of N=10 fermions interacting through V
=¢; in LLs with different € we find such E=L=0 series at
2€=5N-9, extrapolating to N/2{— V=% in large systems.
CF pairing in this state is evident from the amplitudes G(R)
plotted in Fig. 1. Moreover, comparison of correlation ener-
gies shows that it is favored over the Laughlin VZ% state of
the CFs.

Conversion from 2€=5N-9 to 2¢*=N-1 of a filled CF*
shell is achieved by the following transformation:

20*=20-4(N=-2). (1)

Attributing degeneracy of CF-LL; to fictitious magnetic flux,
Eq. (1) can be interpreted as attachment of p=4 flux quanta
to each CF. Furthermore, the factor (N—2) suggests that each
CF* sees an average flux from all but one other CF, which
simply reflects the CF pairing.

Notably, the 2¢=5N-9 series of ground states includes
both even and odd CF numbers, undermining the “CF pair-
ing” interpretation of Eq. (1). However, no particular CF
correlation was assumed in the formulation of Eq. (1), which
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TABLE II. Angular momentum multiplets of K=4 Abelian
quasiholes in a shell of angular momentum €* (to be compared with
data from Table I for N=8 particles and different €’s).

20 K 20F L

32 1 8 4

33 2 9 02468

34 3 10 0234256278910 12

35 4 11 0%22334%526%728%9210° 111221314 16

instead followed directly from the analysis of “numerical ex-
periments” (spectra of V=253).

Let us turn to elementary excitations. QHs of a nonde-
negerate E=0 ground state can be identified as degenerate
E=0 eigenstates in a system with added flux.'” We computed
the spectra of V=55 for N=10 CFs at 2¢=5N-9+K with
K=4. In Table I we list all E=0 multiplets L” for N=8 (7
counts the number of multiplets at each L). For comparison,
in Table II we show the multiplets predicted from CF trans-
formation (1), i.e., for K fermion QHs in a shell with ¢*
=2(N-1+K).

Surprisingly, Table I shows no states at 2€=32 in contrast
to prediction of a single QH (K=1) in Table II. Evidently,
addition of a single flux quantum to the nondegenerate E
=0 ground state at 2¢ =5N-9 does not produce a degenerate
E=0 band that might be interpreted as LL degeneracy of a
QH. This is clearly different from other known (Laughlin,
Jain, or Moore-Read) IQLs.

At 2¢>32, Table I shows a growing number of E=0
states, in each case containing all multiplets from Table II.
The maximum total angular momentum of K QHs, A=K¢*
- %K (K-1)= %KN, always correctly predicts the maximum L
in Table I, supporting the CF picture of QH excitations.
Fermi statistics of QHs is conventional since the same sets of
L multiplets could result for K bosons with angular momen-
tum €=¢ *—%(K - 1)=%N. However, the occurrence of addi-
tional E=0 states beyond those predicted for K fermions/
bosons implies that the QHs considered here cannot be
described as Abelian (regardless of the choice of K and €7).
This argument was raised earlier'® for non-Abelian QHs of
other known paired IQLs. In those states, knowledge of the
many-body wave function allowed expression of total di-
mensions of the Hilbert spaces, D=27(2L+1), by direct ac-
count for (non-Abelian) exchanges of the QHs. Here, the
values of D are different, and (not knowing an explicit for-
mula) we list them in Table III along with Da=(N;,K) for K
Abelian QHs. For Moore-Read state, D/D,— 252! in large

TABLE III. Dimensions D of zero-energy subspaces for N=9 fermions with interaction V= 83(R), compared with dimensions D,, of the

corresponding spaces of K Abelian quasiholes.

IS}

K 2 4
N 6 7 8 9 6 7 8 9 6 7 8 9

D 29 39 51 65 105 182 295 452 376 790 1553 2878
D 28 36 45 55 84 120 165 220 210 330 495 715
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TABLE IV. Numbers 7 of zero-energy angular momentum multiplets L in the spectrum of model interaction V=355(R) for different
particle numbers N=9 and shell angular momenta € =%(5N -9+K); A=%KN (see text).

n for A—L

K N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 6 1 1 1 2

7 1 1 1 2

8 1 1 1 2 2

9 1 1 1 2 2
3 6 1 1 1 2 1 3 2

7 1 1 1 2 2 3 2 3 2 1

8 1 1 1 2 2 4 2 5 3 4 1 3

9 1 1 1 2 2 4 3 5 5 5 4 5 1
4 6 1 2 1 4 2 6 2 6 2 4 4

7 1 2 1 4 3 7 5 10 5 10 5 7 5

8 1 2 1 4 3 8 6 13 9 17 10 18 8 13 2 8

9 1 2 1 4 3 8 7 14 12 21 17 28 18 28 16 20 5 11

systems.'® Here, this ratio is higher, although finite-size data
in Table III are insufficient for extrapolation.

Dependence of multiplicities 7 on system size appears
simpler when they are considered as a function of R*
=K{*-L (relative angular momentum of K QHs) instead of
L. Actually, to make Table IV more compact we chose A
—LzR*—%K(K— 1) instead of R* itself. Clearly, multiplici-
ties 7 become size independent at larger N, and the N=o
limits 7(K,R*) have already been reached for N=9 at those
few smallest R*’s marked with boldface.

Comparison with multiplicities 7,(K,R*) predicted for K
Abelian QHs is made in Table V. The differences n— 7, were
calculated for N=9, but for the shown small values of A
—L they correctly describe an infinite (planar) system. Simi-
lar to state counts for fixed QH positions,' 7- 1, gives the
number of additional states due to non-Abelian QH ex-
change. Remarkably, the values in Table V differ from
those!” of Moore-Read state (e.g., 7—17,=0 for K=2, and
n-7,=0,0,1,0,1,1,... for K=4 and A-L=0,1,2,..., re-
spectively).

Let us summarize discussion of the £=0 ground state of
V=5(R) at v= é: (i) the fact that the largest angular momen-
tum A predicted from CF transformation (1) agrees with the
largest L of the E=0 states for nearly (see below) every
combination of N and 2¢=5N-9 supports this transforma-
tion and the QH picture of the E=0 subspace. (ii) The (un-
explained) exception is the lack of E=0 states at 2€=5N
-8 in the CF picture corresponding to a single QH at L
=%N. (iii) The fact that D>D, for K=2 is a sign of non-

Abelian statistics of the QHs. (iv) The dependences of 7
— 17, on R* for different numbers K are an important charac-
teristic of the non-Abelian QHs; here, they allow for distinc-
tion from the statistics of Moore-Read QHs.

Let us return to the VZ% state of CFs. On a sphere, it is
represented by a series of L=0 ground states at 2€=3N-7
(distinct from 3N—-3 of the Laughlin state of individual fer-
mions and from 3N-5 of the hypothetical Laughlin-
correlated states of R=1 fermion pairs).'8

Transformation (1) can be naturally extended to

20" =26 - p(N-2)|, )

with an arbitrary number p of flux quanta attached to each
CF. In contrast to the original CF picture of Jain,® odd values
of p must also be admitted due to pairing (path of a given
particle can only encircle a whole other pair). Let us consider
an arbitrary number |n| of completely filled CF* shells, with
the effective magnetic field pointing either in the same or in
the opposite direction to the fictitious external field giving
rise to the degeneracy of CF-LL;. The latter case, corre-
sponding to 2€ <p(N-2), will be conveniently distinguished
by a negative sign of n.
The filling of CF* shells yields a family of CF states at

2€=(p+n )N-Q2p+n), (3)

extrapolating to v=1im(N/2€)=(p+n"")"" on a plane (some
fractions » result for two combinations of p and n). By con-
struction, Eq. (3) includes the (p,n)=(4,1) zero-energy state
at 2€=5N-9. Remarkably, the V=% state at 2¢=3N-7 also

TABLE V. Difference between numbers 7 of zero-energy angular momentum multiplets L from Table IV and numbers 7, predicted for

corresponding systems of K Abelian quasiholes.

K 2

A-L o 1 2 3 4 5 6 7 8 0 1
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emerges as (4,—1), while (1,1) reproduces another familiar
V=% series at 2€=2N-3.

Different only by the sign of n (direction of effective
magnetic field), the v=% state (4,—1) might have similar CF
correlations to the V=§ state (4,1). This connection suggests
non-Abelian QP excitations at VEZ%. Unfortunately, the nu-
merical spectra of V=8; for N=12 at 2¢=3N-7 (not
shown) are not conclusive: they contain low-energy QP
bands predicted by transformation (2) but show no obvious
sign of non-Abelian statistics.

To check which of the (p,n) states of Eq. (3) actually
occurs for the interacting CFs, we computed ground-state
energies of N=10 fermions interacting through V=455 or
through a more realistic CF pseudopotential of Lee ef al.'” as
a function of 2€. Results for N=10 are shown in Fig. 2. The
largest excitation gaps A occur for (p,n)=(4,-1) and (1,1),
corresponding to the known'> FQH states at v,=+7 and 3.
Sizable gap is also found for (4,-2), suggesting a (so far
undetected) FQH state at vezz%. Other states, including the
parent state (4,1), show only marginal incompressibility.

In conclusion, we postulate emergence of non-Abelian
statistics in the lowest LL, in a family of second-generation
liquids of correlated CFs. The argument involves: (i) identi-
fication of zero-energy state of a model CF-CF interaction;
(ii) definition of flux attachment scheme converting this state
into a filled shell; (iii) demonstration of non-Abelian statis-
tics of its QHs; and (iv) construction of the hierarchy of
IQLs, including known FQH states at v,= 14—] and % and a new
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model interaction: V=083 CF-CF interaction (in units: e%/\)
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FIG. 2. (Color online) (a) Ground-state energy per particle E/N
(also, lowest energy at L=0) of N=10 particles with model interac-
tion V=45 on a sphere as a function of shell angular momentum <.
(b) Same as (a) but energy E shifted by constX € so that E
=E,; (to emphasize cusps). (c) Excitation gaps of L=0 ground
states. (d)—(f) Same as (a)—(c) but for pseudopotential in CF-LL,
taken from Ref. 17.

state at ve=29—5. These concepts were confirmed by exact di-
agonalization studies.
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